
www.manaraa.com

366

ISSN 0361-7688, Programming and Computer Software, 2017, Vol. 43, No. 6, pp. 366–372. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © K.A. Batuzov, 2017, published in Programmirovanie, 2017, Vol. 43, No. 6.

The Use of Vector Instructions of a Processor Architecture
for Emulating the Vector Instructions

of Another Processor Architecture
K. A. Batuzov

Institute for System Programming, Russian Academy of Sciences,
Moscow, 109004 Russia

e-mail: batuzovk@ispras.ru
Received June 10, 2017

Abstract—The complexity of software is ever increasing, and it requires more and more computational
resources for its execution. A way to satisfy these requirements is the use of vector instructions that can oper-
ate with fixed-length vectors of data of the same. A method for representing vector instructions of one pro-
cessor architecture in terms of the vector instructions of another architecture during the dynamic binary
translation is proposed. An implementation of this method that includes the translation of vector addition and
memory access increased the performance of the QEMU emulator by a factor greater than three on an arti-
ficial example and 12% on a real-life application.

DOI: 10.1134/S0361768817060032

1. INTRODUCTION

The rush toward performance is the inevitable part
of the history of computing. The ever increasing com-
plexity of software requires more computational
resources for its execution. A way to satisfy these
requirements is the inclusion of vector instructions
that can operate with fixed-length vectors of data of
the same type in the processor architecture. Many
widespread processor architectures support vector
instructions: the x86 architecture includes the SSE
extension [1], ARM includes NEON [2], and Pow-
erPC has AltiVec [3].

Vector instructions can be included in the code in
various ways—by writing assembler code by hand, by
using intrinsic functions provided by a compiler, or by
the automatic loop vectorization performed by a com-
piler.

In this paper, we consider the class of programs
called emulators. Emulators are used for running pro-
grams written for one (guest) architecture or operating
system on a processor of another (host) architecture or
under another operating system. There are efficient
solutions for the case when the guest and the host
architectures are identical, but we consider the general
case when these architectures are different.

In the general case, emulators use dynamic binary
translation when the executable code of a program is
translated during its execution by small acyclic frag-
ments into the code of the host architecture. The over-

whelming part of the time, the translated code rather
than the code of the emulator is executing.

Ordinary methods for introducing vector instruc-
tions in the program cannot be used in dynamic binary
translation. Since the translation is from a correct exe-
cutable code of a certain processor architecture, no
intrinsic functions can be encountered in this code.
The automatic vectorization deals with loops, while
the dynamic binary translator works with small acyclic
regions. However, the original program probably
already contains vector instructions, and they can be
represented by the vector instructions of the host
architecture.

In this paper, we investigate the possibilities of rep-
resenting the vector instructions of a processor archi-
tecture in terms of the vector instructions of another
architecture. The proposed method was implemented
in the full system emulator QEMU. This implementa-
tion includes only the translation of vector addition
and memory access operations. Experiments showed
the speedup by a factor greater than three on an artifi-
cial example and by 12% on a real application.

2. PROBLEM DOMAIN
AND RELATED WORK

2.1. Vector Instructions
Vector instructions can perform operations on a

sequence of numbers of the same type rather than on
a single number. These instructions operate with vec-

www.manaraa.com

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 6 2017

THE USE OF VECTOR INSTRUCTIONS 367

tors of a fixed bit length. The length of vectors can be
different, depending on the specific architecture, but
usually it is a power of two. In modern architectures,
vectors of the length 64, 128, 256, and 512 bits are
used. Each vector is interpreted as a sequence of ele-
ments. Depending on the size of the elements, their
number can be different. For example, a 128-bit vector
can be interpreted as a set of four 32-bit numbers or as
16 8-bit numbers. The interpretation depends on the
instructions applied to the vector.

To organize computations, the processor architec-
ture provides a set of vector registers, and a set of vector
instructions. Often, these sets are implemented as
extensions of the processor architecture. For example,
the widespread x86 architecture has MMX, SSE, and
AVX vector extensions; and ARM has the NEON exten-
sion (also called the Advanced SIMD).

The most popular high-level programming lan-
guages, such as Java, C, C++, C#, and Python1 do not
support vector data types and operations. Vector
instructions in the resulting code can be formed by the
automatic loop vectorization by the compiler, or they
can be included by a programmer by hand using
Assembler or extended compiler capabilities.

2.2. Dynamic Binary Translation

The dynamic binary translation can translate the
executable code from one binary representation into
another; in particular, it allows one to execute pro-
grams written for one architecture on a different pro-
cessor architecture. In this case, the architecture for
which the program was originally written is called the
guest architecture, and the architecture on which the
program will be executed after the dynamic binary
translation is called the host architecture.

The binary translation is performed dynamically
(in the course of the program execution) because it
cannot generally be performed statically (i.e., before
the program execution). The translation is done by
small fragments called translation blocks. The size and
the structure of translation blocks can be different
depending on a specific implementation. However, a
typical requirement is that the block must be acyclic
because the dynamic binary translation environment
must be able to regularly get control to handle events,
such as interrupts from various devices.

Typically, the translation goes in two phases: first a
translation block is disassembled into an internal
machine-independent representation, and then an
equivalent code for the host architecture is generated
based on this representation. The part responsible for
the generation of the code from the guest architecture
into the internal representation is called the frontend,

1 These languages occupy the first five positions in the TIOBE
index as of April 2017.

and the part responsible for the generation of the code
for the host architecture is called the backend.

2.3.Related Work

The dynamic binary translation is widely used for
the implementation of emulators. The translation of
scalar instructions is well studied and verified in prac-
tice. The set of scalar instructions includes a standard
set of basic instructions that are implemented in all
widespread architectures—the basic arithmetic opera-
tions, bitwise operations, shifts, comparison opera-
tions, conditional and unconditional jump instruc-
tions, and subroutine calls. Processor architectures
can include a large number of specific instructions,
but all of them either can be represented through the
basic instructions or a helper function can be written
for them that implements the required semantics and
can be called from the resulting code for the host pro-
cessor.

The translation of vector instructions is much less
studied. The sets of vector instructions provide much
more operations, and they significantly vary from
architecture to architecture. The representation of
operations in one set by operations of another set is
generally fairly complicated because the same opera-
tions must be performed on all components of the vec-
tor; therefore, conditional control transfers can be
used only in a very limited number of situations. In
addition the implementation of the helper function
performing the equivalent computations is also diffi-
cult. This is due to the fact that high-level languages
lack the required data types, and the calling conven-
tions for vector values vary much more from one com-
piler to another.

There are specific solutions for representing one set
of vector instruction through other instructions. For
example, the tool ExaGear Desktop produced by
ElTech [4] designed for running programs written for
x86 on ARM processors supposedly is able to translate
the vector instructions of the SSE extension of x86
into the instructions of the NEON extension of ARM.
This software is proprietary, and no information about
its internal organization is freely available. However,
the user documentation states that, in order to execute
the source programs containing MMX/SSE instruc-
tions, the host architecture must support NEON [5].
Note that NEON has a larger set of instructions that
MMX/SSE, and it easier to represent MMX/SSE
instructions through NEON instructions than vice
versa.

Another example of the dynamic binary translation
of vector instructions into another set of vector
instructions is provided by Valgrind [6, 7]. Valgrind is
a dynamic binary translation framework designed for
the analysis of binary code aimed at detecting bugs or
performance analysis. The analyzers (called Valgrind
tools) are written as machine-independent plugins

www.manaraa.com

368

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 6 2017

BATUZOV

that work with the internal representation. The trans-
formation from the binary code into the internal rep-
resentation and back are done by the framework. Val-
grind supports a number of different architectures with
vector extensions, but it always assumes that the guest
and host architectures are identical. Thus, Valgrind
always translates vector instructions into vector
instructions of the same architecture. Nevertheless, in
order for the Valgrind tools to work correctly, the
internal representation must be sufficiently architec-
ture independent. In particular, in different architec-
tures, the same operations of the internal representa-
tion must have identical semantics. In Valgrind, many
operations of the internal representation are used to
represent instructions of different architectures.

These observations allow us to assume that there
are large intersections between different sets of vector
instructions and that a part of instructions in one set
can be represented through instructions of another set.
This paper is devoted to the experimental verification
of this assumption.

2.4. The QEMU Emulator

All the experiments described in the present paper
were performed using the full system open code emu-
lator QEMU [8]. For translation, QEMU uses the
internal representation TCG [9]. TCG is a low-level
representation of the program resembling assembler.
It includes arithmetic and logic operations, condi-
tional and unconditional jumps, loading from mem-
ory, saving to memory, bitwise operations, and func-
tion call instructions. All computations are performed
on variables that can be global, local, or temporary.
The global variables exist during the entire process of
dynamic translation. They have meaningful names
and preserve their values from one translation block to
another. The local variables exist only within one
translation block and temporary variables exist within
one basic block. The local and temporary variables
have no meaningful names; rather they have unique
identifiers. The internal representation in QEMU sup-
ports only two data types—the 32- and 64-bit integers.

The processor state is described by the structure
CPUState. Some fields of this structure can be
accessed from the generated code using the load and
store operations, while some other fields are declared
as global variables in the internal representation. If a
field is a global variable of the internal representation,
then it cannot be operated on by accessing the corre-
sponding memory by pointer. QEMU has no mecha-
nism for tracking the events of overwriting variables
when the memory is accessed by pointer, which can
result in an incorrectly generated code at the stage of
register allocation. As the code for the host system is
generated, only variables can be allocated to registers.
All memory accesses always remain memory accesses.

The guest system memory is emulated using a byte
array. This array is accessed using the special instruc-
tions qemu_ld и qemu_st, which transform the
loading from and saving to the virtual addresses of the
guest system to accesses to the appropriate elements.
These instructions may call the helper function that
actually transforms the addresses. The resulting map-
ping is saved in the translation lookaside buffer (TLB).
When the same memory page is accessed again, no
addresses are actually computed, but the ready-to-use
result from the TLB is taken.

The vector instructions are always emulated by
accessing the memory by pointer. The elements of the
vector are read one-by-one, then the required opera-
tion is performed on them, and finally the elements of
the resulting vector are written to the memory.

3. DESCRIPTION OF THE IMPLEMENTATION
To implement the translation of the guest architec-

ture vector instructions into the vector instructions of
the host architecture, the following is needed:

• add the corresponding data type to the internal
representation,

• add operations on the variables of this type,
• implement the work of qemu_ld and qemu_st

with the values of this type,
• add the use of the new operations to the fron-

tend,
• add the generation of code for the new operations

to the backend.
The minimal set of operations must include the

load, store, and move operations. All other operations
can be emulated using the supported operations or
using scalar operations on the vector elements.

To make the usage of vector instructions of the host
architecture possible, the vector variables must be
allocated to vector registers of the host architecture,
i.e. they must be global variables of the internal repre-
sentation. On the other hand, not all vector instruc-
tions of the guest architecture can be represented
through vector instructions of the host architecture;
i.e., a code must sometime be generated that accesses
individual elements of the vector in memory. There-
fore, two earlier incompatible methods of working
with the processor state must be able to work with the
same fields of the structure CPUState simultane-
ously.

A large number of combinations of the guest and
host architectures makes the choice of the method of
emulation for each specific instruction a nontrivial
task. Therefore, we should design a convenient func-
tions that will choose and generate the optimal emula-
tion method for each operation, depending on the host
architecture. Without such wrapper functions, the
practical application of the proposed method will be
too labor consuming.

www.manaraa.com

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 6 2017

THE USE OF VECTOR INSTRUCTIONS 369

At least in one processor architecture, there is a
considerable overlapping of vector registers of differ-
ent lengths. In the NEON extension of ARM, the 32-
bit registers s0–s31 joined by pairs to form 64-bit
registers d0–d15; in turn, these registers are joined by
pairs to form 128-bitregisters q0–q8. Such a situation
is also encountered for scalar registers. For example
the register ax in x86 consists of the registers al and
ah, and it is a part of the register eax. Presently, all
these registers are considered as a single global variable
corresponding to the longest register; if needed, its
fragments can be accessed. This creates additional
data dependences between nonoverlapping fragments;
however, since short registers are rarely used, this does
not significantly deteriorate the performance. The use
of such an approach in the case of vector registers is
undesirable because the reduction of the independent
32-bit registers by a factor of four will significantly
decrease the performance of the applications that use
these registers.

3.1. Pointer Analysis

In order to make it possible to work with the same
fields of the processor state as with global variables and
as with memory locations, the emulator must provide
a mechanism for tracking the situations in which a
memory access is overlapping with a global variable.
This is a well-known problem called pointer analysis
[10], and no methods for its sufficiently accurate solu-
tion in the general case are known. Fortunately, in the
case under consideration we can make additional
assumptions that significantly simplify the problem.
These assumptions are consequences of the principles
of the emulator operation and are as follows.

1. All variables reside in the emulator’s memory,
and memory accesses from the guest system cannot
overlap with them. For the cases when the registers of
the guest system can be mapped to the address space,
the emulator has a special mechanism called iomem,
which ensures the validity of accesses through the
address space at the cost of decreased performance.
All operations with the corresponding addresses call
the appropriate helper functions that ensure that all
the variables are correctly saved.

2. All global variables are assigned a memory loca-
tion that is a field in CPUState, and all variables are
accessed using the address of the beginning of this
structure with a constant offset.

3. The vast majority of the emulator memory accesses
are made relative to the beginning of CPUState.

Thus, for each memory access, it must be found
out if it is addressed relative to the beginning of the
structure CPUState, and if this is the case, then
determine the offset. Then, knowing the offsets and
sizes of all variables, one can find out which of them
overlap with the given memory access. For the address
of the beginning of CPUState, a special variable in

the internal representation called env is assigned; it is
always stored in a specially assigned register and its
value is never modified.

The control f low graph of each translation block is
acyclic; therefore, the data f low can be analyzed using
only one pass in forward direction. For each variable at
each point of the program we can determine

• if its value is a compile-time constant at this
point of the program, and, if this is the case, then what
is its value;

• whether this variable’s value can be represented
as env + C, where C is a compile-time constant; if
this is the case, then determine the value of this con-
stant.

If none of these conditions holds true, then we
assume that the variable contains a value about which
nothing is known.

All memory accesses in the internal representation
use the address in the form base + offset, where both
the base and the offset are variables. If at least one of
these variables can be represented as env + C and the
other one is a constant, then one can unambiguously
determine the variables in the internal representation
intersecting with the given operation. Otherwise, a
conservative assumption that this operation can inter-
sect with any variable may be used. In practice, this
case in never realized.

The data about the overlapping of memory
accesses with global variables is used in the liveness
analysis, and the results of this analysis are used for
register allocation. Two types of overlapping are differ-
entiated:

• complete, when the memory access completely
covers all bytes of the variable,

• partial, when the memory access has only some
common bytes with the variable.

When the memory is read, all the variables with
which this access overlaps must be saved to memory.
When the memory is written, only the variables with
which this access partially overlaps must be saved to
memory, and the variables that are completely over-
written by this write operation must be marked as
dead.

Consider an example. Suppose that the piece of
code for ARM shown in Listing 1 is executed. Suppose
that the translation to the vector operation of the host
architecture is supported for the vector addition vadd
but not supported for the pairwise vector addition
vpadd. Then, in the intermediate representation, the
corresponding vector operations will be generated for

Listing 1

vadd.i32 q0, q0, q1
vpadd.i32 d0, d0, d1
vadd.i32 q0, q1, q1

www.manaraa.com

370

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 6 2017

BATUZOV

vector addition, while for the pairwise vector addition
the emulating code that reads elements one-by-one
will be generated. The resulting intermediate repre-
sentation is shown in Listing 2. The offsets of all mem-
ory accesses relative to env are constants, and these
accesses overlap with the variable q0 with the offset
0x858, but they do not affect the variable q1 whose
offset is 0x868. Therefore, the value of q0 must be
saved to memory after the first vector addition and
loaded back before the last one. The variable q1 can be
loaded to the register once in the beginning of the

translation block and saved at its end. The correspond-
ing assembler code for x86_64 is shown in Listing 3.
The register %r14 is used to store the value of env.

3.2. Overlapping of Variables
The case of the complete or partial overlapping of

variables is processed in the same way as the overlap-
ping of memory accesses with variables. For each vari-
able, two lists must be composed: the list of variables
that are completely within this variable and the list of
variables that partially overlap with the given one.
These lists may be made up by hand or generated auto-
matically.

For the automatic computation of overlapping of
variables, note that here we are dealing only with
global variables. All the global variables are also fields
in the structure CPUState, and they can be
described by their size and offset of the corresponding
field from the beginning of the structure. Thus, to
check if two variables overlap, it is sufficient to check
if two given address ranges intersect. The total number
of global variables is not large, and they are created
only once when the emulator is initialized. Therefore,
the iteration over all pairs of variables takes
operations, which is quite acceptable from the perfor-
mance point of view.

3.3.Wrapper Functions
Different host architectures can support different

sets of vector instructions. Therefore, as the source
code is translated, the support of each potential vector
instruction must be checked. To implement this fea-
ture, wrapper functions that check whether the corre-
sponding vector instruction can be used. If this
instruction is supported, then a vector operation is
generated in the internal representation; otherwise,
the emulation code is generated that handles each ele-
ment of the vector individually.

The emulation code can be organized in different
ways:

• as a series of calls to a helper function of which
each performs the operation on one vector element,

• as a single call to a helper function that trans-
forms the entire vector,

• as a sequence of scalar operations on the internal
representation.

The last method is preferable from the perfor-
mance point of view. However, for the operations that
are difficult to represent in internal representation, the
other methods are also acceptable.

4. EXPERIMENTAL RESULTS
The translation method of the guest vector instruc-

tions into the host vector instructions described above
was implemented in QEMU version 2.9.50 (commit

2()O N

Listing 2

–––– vadd.i32 q0, q0, q1
add_i32x4 q0, q0, q1

–––– vpadd.i32 d0, d0, d1
ld_i32 tmp5, env, $0x858
ld_i32 tmp6, env, $0x85c
add_i32 tmp5, tmp5, tmp6
st_i32 tmp5, env, $0x858
ld_i32 tmp5, env, $0x860
ld_i32 tmp6, env, $0x864
add_i32 tmp5, tmp5, tmp6
st_i32 tmp5, env, $0x85c

–––– vadd.i32 q0, q0, q1
add_i32x4 q0, q0, q1

Listing 3

;–––– vadd.i32 q0, q0, q1
movdqu 0x858(%r14), %xmm0
movdqu 0x868(%r14), %xmm1
paddd %xmm1, %xmm0
movdqu %xmm0, 0x858(%r14)

;–––– vpadd.i32 d0, d0, d1
mov 0x858(%r14), %ebp
mov 0x85c(%r14), %ebx
add %ebx, %ebp
mov %ebp, 0x858(%r14)
mov 0x860(%r14), %ebp
mov 0x864(%r14), %ebx
add %ebx, %ebp
mov %ebp, 0x85c(%r14)

;–––– vadd.i32 q0, q0, q1
movdqu 0x858(%r14), %xmm0
paddd %xmm1, %xmm0
movdqu %xmm0, 0x858(%r14)
movdqu %xmm1, 0x868(%r14)

www.manaraa.com

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 6 2017

THE USE OF VECTOR INSTRUCTIONS 371

9964e96dc9999cf7f7c936ee854a795415d19b60).
More precisely, memory access vector operations and
vector addition operations of 64- and 128-bit vectors
were implemented. The guest architecture was ARM,
and x86_64 was used as the host architecture.
No other operations besides addition have been
implemented, but even the partial implementation of
the proposed approach demonstrates a considerable
improvement of performance. The implementation
was tested on different types of programs:

• an artificial example in which the proposed
method was expected to demonstrate a significant
effect,

• the result of automatic vectorization by the gcc
compiler,

• artificial programs aimed at the verification of
validity of pointer analysis and overlapping of variables,

• the real-life video compression program x264,
which intensively uses vector instructions written by
hand.

The artificial program for checking the potential
improvement in performance is a loop with a fixed
number of iterations in which vector registers are
repeatedly added. The assembler code of this program
is shown in Listing 4.

The second type of tests was obtained by running
the automatic vectorization algorithm [11] on a loop
that adds the elements of two arrays and writes the
result to the third array. The C source code is shown in
Listing 5. By varying the types of array elements, four
different test cases that used different types of addition
were obtained. For adding one-byte numbers, the

number of elements in the array was doubled because
otherwise the compiler unrolls the loop. These tests
were compiled by GCC [12] version 4.7.3 20130102
(prerelease) with the options -O3-ftree-vector-
ize-mfpu=neon-mfloat-abi=hard-
mcpu=cortex-a8-fno-unroll-loops.

The artificial programs for verifying the validity of
pointer analysis and overlapping of variables were
obtained from the tests of the two preceding types. The
assembler code of these tests was modified by adding
instructions operating on overlapping variables or
unsupported instructions that should be translated
into memory accesses in the emulator.

The validity of the results produced by these test
programs was checked by outputting their resulting
values.

As the real-life application, the program x264 [13]
(commit 3f5ed56d4105f68c01b86f94f41bb9bbefa3433b)
was used to compress a short video clip. In this case,
the validity of the result was verified by comparing the
md5 hash of the resulting file with the hash of the
expected file. Since this implementation of the video
codec is deterministic, such a comparison makes
sense.

The results of performance measurements are
shown in Table 1. The column “QEMU” corresponds
to running the unmodified QEMU, and the column
“QEMU-vect” corresponds to running QEMU with
the modifications described in the paper. The row
“artificial” corresponds to the artificial test. The rows
“autovect.i8”, “autovect.i16”, “autovect.i32”, and
“autovect.i64” correspond to the tests obtained using
the automatic vectorization. The number at the end
shows the element size in bits. The row “x264” shows
the results of running the video encoding program.

On the artificial program, the speedup is by a factor
greater than three. On the automatically vectorized
loops, the speedup is slightly lower because the contri-
bution of vector instructions to the total execution
time is lower. In the case of 64-bit numbers, the
speedup is significantly lower because the current
implementation uses less operations compared with
the implementation for the 32-bit numbers. There is
no considerable difference between the 8-bit, 16-bit
and 32-bit numbers due to the features of the current
implementation. In this implementation, the reads are

Listing 4

mov r0, #0xb0000000
loop:

vadd.i32 q0, q0, q1
vadd.i32 q0, q0, q1
vadd.i32 q0, q0, q1
vadd.i32 q0, q0, q1
subs r0, r0, #1
bne loop

Listing 5

int a[256], b[256], c[256];
void foo (void) {

int i;

for (i = 0; i < 256; i++){
a[i] = b[i] + c[i];

}
}

Table 1. Performance measurements on various tests

Test QEMU QEMU-vect Speedup

artificial 25.304 7.748 3.27x
autovect.i8 1.604 0.616 2.60x
autovect.i16 3.648 1.304 2.80x
autovect.i32 5.392 2.248 2.40x
autovect.i64 6.296 4.280 1.47x
x264 204.356 183.172 1.12x

www.manaraa.com

372

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 6 2017

BATUZOV

always performed by 32-bit fragments, and the vector
addition of 32-bit vectors is made using scalar opera-
tions and masking the most significant bits. Thus, the
difference in the number of operations in the basic and
modified implementations remains unchanged.

In distinction from the other tests, the real-life
application uses a greater number of various instruc-
tions without preferring the implemented addition
operations. However, on this program we also observe
a noticeable speedup by 12%, which is explained by the
influence of operations of copying data arrays. When
vector registers are used, a less memory loading and
memory saving operations are needed.

5. CONCLUSIONS

A method for representing vector instructions of one
processor architecture in terms of the vector instruc-
tions of another architecture during the dynamic binary
translation was proposed. The difficulties occurring in
the implementation of this method were analyzed and
ways for resolving them were proposed. An implemen-
tation for the special case of the pointer analysis prob-
lem and processing of overlapping of global variables
of the internal representation was developed. The
method was tested in the open-source emulator
QEMU. As a result, the speedup by a factor greater
than three on an artificial program and 12% on a real-
life application was achieved.

In the further work, it is intended to implement a
larger set of vector operation and pass this implemen-
tation to QEMU developers. This is a practical task, all
the studies needed for its accomplishment have been
made, verified on a certain set of operations, and
described in the present paper.

REFERENCES
1. AMD64 Architecture Programmer’s Manual, Vol. 4: 128-

Bit and 256-Bit Media Instructions. https://sup-
port.amd.com/TechDocs/26568.pdf

2. ARM Architecture Reference Manual. ARMv7-A and
ARMv7-R Edition. http://infocenter.arm.com/help/
index.jsp?topic=//com.arm.doc.ddi0406c/index.html

3. AltiVecTM Technology Programming Environments Man-
ual. http://www.nxp.com/docs/en/reference-manual/
ALTIVECPEM.pdf

4. Eltechs ExaGear Desktop. Run x86 Applications on ARM-
based Devices. https://eltechs.com/

5. ExaGear Desktop System Requirements (updated for
v2.1). http://forum.eltechs.com/viewtopic.php?f= 4&t
=4&sid?61125b0cdd4fdc640dee682449c870

6. Nethercote, N. and Seward, J., Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation, in
Proc. of the ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation (PLDI
2007), San Diego, Calif., 2007, vol. 42, no. 6, pp. 89–
100.

7. Valgrind: Code Repository. http://valgrind.org/down-
loads/repository.html

8. Bellard, F., QEMU, A fast and portable dynamic trans-
lator, in Proc. of the Annual Conference on USENIX,
2005, pp. 41–46.

9. QEMU Documentation/TCG. http://wiki.qemu.org/
Documentation/TCG

10. Aho, A., Lam, M., Sethi, R., and Ullman, J., Compil-
ers: Principles, Techniques, & Tools, Boston: Pear-
son/Addison Wesley, 2007, 2nd ed.

11. Auto-vectorization in GCC — GNU Project — Free
Software Foundation (FSF). https://gcc.gnu.org/proj-
ects/tree-ssa/vectorization.html

12. GCC, the GNU Compiler Collection. https://gcc.
gnu.org/

13. x264, the best H.264/AVC encoder — VideoLAN.
http://www.videolan.org/developers/x264.html

Translated by A. Klimontovich

